EXPONENTIAL FUNCTION

An exponential function, where a>0 and $a\neq 1$, is a function of the form

$$f(x) = a^{x}$$
$$f(x) = x^{2} - 4$$

On the same coordinate system graph $f(x) = 2^x$ and $g(x) = 3^x$.

$$2^{x} = 0$$

$$2^{1} = \frac{1}{2}$$

PROPERTIES OF THE GRAPH OF $f(x) = a^x$ WHEN a > 1Domain $(-\infty, \infty)$ Range $(0, \infty)$ x-intercept None y-intercept (0, 1)Contains $(1, a), (-1, \frac{1}{a})$ Asymptote x-axis, the line y = 0 (1, 2) $(-1, \frac{1}{2})$ $(-1, \frac{1}{3})$ $(-1, \frac{1}{3})$ $(-1, \frac{1}{3})$

On the same coordinate sy	On the same coordinate system, graph $f(x) = \left(\frac{1}{2}\right)^x$ and $g(x) = \left(\frac{1}{3}\right)^x$.			

PROPERTIES OF THE GRAPH OF $f(x) = a^x$

when $a > 1$		when $0 < a < 1$	
Domain	$(-\infty,\infty)$	Domain	$(-\infty,\infty)$
Range	$(0,\infty)$	Range	$(0,\infty)$
x-intercept	none	x-intercept	none
y-intercept	(0, 1)	y-intercept	(0, 1)
Contains	$(1,a), (-1,\frac{1}{a})$	Contains	$(1, a), (-1, \frac{1}{a})$
Asymptote	x-axis, the line $y = 0$	Asymptote	x-axis, the line $y = 0$
Basic shape	increasing	Basic shape	decreasing

У
Tí
اخ
4
2

On the same coordinate system, graph: $f(x) = 2^x$ and $g(x) = 2^{x-1}$.

On the same coordinate system, graph: $f(x) = 3^x$ and $g(x) = 3^{x+1}$.

On the same coordinate system, graph: $f(x) = 3^x$ and $g(x) = 3^x + 2$.

On the same coordinate system graph $f(x) = 3^x$ and $g(x) = 3^x - 2$.

The number e is defined as the value of $\left(1+\frac{1}{n}\right)^n$, as n increases without bound. We say, as n approaches infinity,

 $e \approx 2.718281827...$

NATURAL EXPONENTIAL FUNCTION

The natural exponential function is an exponential function whose base is \emph{e}

$$f\left(x\right) = e^{x}$$

The domain is $(-\infty, \infty)$ and the range is $(0, \infty)$.

How to Solve an Exponential Equation

Solve:
$$\underline{3}^{2x-5} = \underline{27}$$
.

Solve:
$$3^{3x-2} = 81$$
.

$$3^{3\times-2} = 3^{4}$$
$$3\times-2 = 9$$
$$3\times=6$$
$$X=2$$

Solve:
$$7^{x-3} = 7$$
.

HOW TO How to Solve an Exponential Equation Step 1. Write both sides of the equation with the same base, if possible. Step 2. Write a new equation by setting the exponents equal. Step 3. Solve the equation. Step 4. Check the solution.

Solve $\frac{e^{x^2}}{e^3} = e^{2x}$.

$$e^{x^{2}-3} = e^{2x}$$

$$x^{2}-3 = 2x$$

$$x^{2}-3 = 2x$$

$$x^{2}-3 = 0$$

$$(x-3)(x+1) = 0$$

$$x=3$$

$$x=-1$$

Solve: $\frac{e^{x^2}}{e^x} = e^6$.

$$e^{x^2-x}=e^{6}$$
 $x^2-x=6$

$$(X-3)(X+5) = 0$$

COMPOUND INTEREST

For a principal, *P*, invested at an interest rate, *r*, for *t* years, the new balance, *A*, is:

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

$$A = Pe^{rt}$$

when compounded n times a year. when compounded continuously.

Compound

EXAMPLE 10.16

A total of \$10,000 was invested in a college fund for a new grandchild. If the interest rate is 5%, much will be in the account in 18 years by each method of compounding?

(a) compound quarterly

a) n= 4 P=10,000 $A = P(1+\frac{r}{n})^{nt}$ $= 10,000(1+\frac{.05}{4})^{nt}$

(b) compound monthly

r= .05

© compound continuously

b)
$$A = 10,000(1 + \frac{.05}{12})(18) t = 18$$

= 24550.08

Angela invested \$15,000 in a savings account. If the interest rate is 4%, how much will be in the account in 10 years by each method of compounding? (a) compound quarterly (b) compound monthly (c) compound continuously

